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We found in part 5 of this series, “Introduction to the Racing Line,” that
a driver can lose a shocking amount of time by taking a bad line in a corner.
With a six-foot-wide car on a ten-foot-wide course, one can lose sixteen
hundredths by ‘blowing’ a single right-angle turn. This month, we extend
the analysis of the racing line by following our example car down a straight.
It is often said that the most critical corner in a course is the one before the
longest straight. Let’s find out how critical it is. We calculate how much
time it takes to go down a straight as a function of the speed entering the
straight. The results, which are given at the end, are not terribly dramatic,
but we make several, key improvements in the mathematical model that is
under continuing development in this series of articles. These improvements
will be used as we proceed designing the computer program begun in Part 8.
The mathematical model for traveling down a straight follows from New-
ton’s second law:
F= ma, (1)

where F' is the force on the car, m is the mass of the car, and a is the
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acceleration of the car. We want to solve this equation to get time as a
function of distance down the straight. Basically, we want a table of numbers
so that we can look up the time it takes to go any distance. We can build this
table using accountants’ columnar paper, or we can use the modern version
of the columnar pad: the electronic spreadsheet program.

To solve equation 1, we first invert it:

a= F/m. (2)

Now a, the acceleration, is the rate of change of velocity with time. Rate of
change is simply the ratio of a small change in velocity to a small change in
time. Let us assume that we have filled in a column of times on our table.
The times start with 0 and go up by the same, small amount, say 0.05 sec.
Physicists call this small time the integration step. It is standard practice to
begin solving an equation with a fixed integration step. There are sometimes
good reasons to vary the integration step, but those reasons do not arise in
this problem. Let us call the integration step At. If we call the time in the
i-th row t;, then for every row except the first,

At = t; — t;_, = constant. (3)

We label another column velocity, and we’ll call the velocity in the i-th
row v;. For every row except the first, equation 2 becomes:

Vi — Vi—

== L= F/m. (4)

We want to fill in velocities as we go down the columns, so we need to solve
equation 4 for v;. This will give us a formula for computing v; given v;_; for
every row except the first. In the first row, we put the speed with which we
enter the straight, which is an input to the problem. We get:

v; = vi—1 + AtF/m. (5)

We label another column distance, and we call the distance value in the
i-th row z;. Just as acceleration is the rate of change of velocity, so velocity
is the rate of change of distance over time. Just as before, then, we may

write:
Iy — Ti-

e (6)

Vi =
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Solved for z;, this is:
Ty = Ti—1 + At‘i'.);. (7)

Equation 7 gives us a formula for calculating the distance for any time
given the previous distance and the velocity calculated by equation 5. Physi-
cists would say that we have a scheme for integrating the equations of motion.

A small detail is missing: what is the force, F'? Everything to this point
is kinematic. The real modeling starts now with formulas for calculating the
force. For this, we will draw on all the previous articles in this series. Let’s
label another column force, and a few more with drag, rolling resistance,
engine torque, engine rpm, wheel rpm, trans gear ratio, drive ratio, wheel
torque, and drive force. As you can see, we are going to derive a fairly
complete, if not accurate, model of accelerating down the straight. We need
a few constants:

CONSTANT SYMBOL EXAMPLE VALUE

rear end ratio R 3.07
density of air p 0.0025 slugs/ft?
coeff. of drag Ca 0.30
frontal area A 20 ft?
wheel diameter d 26 in = 2.167 ft
roll resist factor 7, 0.696 1b/(ft/sec)
car mass m 100 slug
first gear ratio g1 2.88
second gear ratio g 1.91
third gear ratio g3 1.33
fourth gear ratio g4 1.00
and a few variables:
VARIABLE SYMBOL EXAMPLE VALUE
engine torque Tk 330 ft-lbs
drag Fy 45 lbs
rolling resistance F; 54 lbs
engine rpm E 4000
wheel rpm w 680
wheel torque Tw 1930 ft-lbs
wheel force Fw 1780 1bs
net force F 1681 lbs



All the example values are for a late model Corvette. Slugs are the English
unit of mass, and 1 slug weighs about 32.1 lbs at sea level (another manifes-
tation of F = ma, with F in lbs, m in slugs, and a being the acceleration of
gravity, 32.1 ft/secy).

The most basic modeling equation is that the force we can use for forward
acceleration is the propelling force transmitted through the wheels minus
drag and rolling resistance:

F=Fy—F;—F,. (8)

The force of drag we get from Part 6:
1
Hyp= §CdAPUe2 : (9)

Note that to calculate the force at step i, we can use the velocity at step i.
This force goes into calculating the acceleration at step i, which is used to
calculate the velocity and distance at step i+ 1 by equations 5 and 7. Those
two equations represent the only ‘backward references’ we need. Thus, the
only inputs to the integration are the initial distance, 0, and the entrance
velocity, vp.

The rolling resistance is approximately proportional to the velocity:

F, = r,v; = 0.696v,. (10)

This approximation is probably the weakest one in the model. I derived it
by noting from a Corvette book that 8.2 hp were needed to overcome rolling
resistance at 55 mph. I have nothing else but intuition to go on for this
equation, so take it with a grain of salt.

Finally, we must calculate the forward force delivered by the ground to
the car by reaction to the rearward force delivered to the ground via the

engine and drive train: -
Efigk
Fy = :
w 72 (11)

This equation simply states that we take the engine torque multiplied by the
rear axle ratio and the transmission drive ratio in the k-th gear, which is
the torque at the drive wheels, Tw, and divide it by the radius of the wheel,
which is half the diameter of the wheel, d.
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To calculate the forward force, we must decide what gear to be in. The
logic we use to do this is the following: from the velocity, we can calculate
the wheel rpm: e

W =60 — —. 12
min 7d )
From this, we know the engine rpm:

E = W Rgy. (13)

At each step of integration, we look at the current engine rpm and ask “is
it past the torque peak of the engine?” If so, we shift to the next highest
gear, if possible. Somewhat arbitrarily, we assume that the torque peak is at
4200 rpm. To keep things simple, we also make the optimistic assumption
that the engine puts out a constant torque of 330 ft-lbs. To make the model
more realistic, we need merely look up a torque curve for our engine, usually
expressed as a function of rpm, and read the torque off the curve at each
step of the integration. The current approximation is not terrible however;
it merely gives us artificially good times and speeds. Another important
improvement on the logic would be to check whether the wheels are spinning,
i.e., that acceleration is less than about 3G, and to ‘lift off the gas’ in that
case.

We have all the ingredients necessary to calculate how much time it takes
to cover a straight given an initial speed. You can imagine doing the calcula-
tions outlined above by hand on columnar paper, or you can check my results
(below) by programming them up in a spreadsheet program like Lotus 1-2-3
or Microsoft Excel. Eventually, of course, if you follow this series, you will
see these equations again as we write our Scheme program for simulating car
dynamics. Integrating the equations of motion by hand will take you many
hours. Using a spreadsheet will take several hours, too, but many less than
integrating by hand.

To illustrate the process, we show below the times and exit speeds for a
200 foot straight, which is a fairly long one in autocrossing, and a 500 foot
straight, which you should only see on race tracks. We show times and speeds
for a variety of speeds entering the straight from 25 to 50 mph in Table 1.
The results are also summarized in the two plots, Figures 1 and 2.

The notable facts arising in this analysis are the following. The time
difference resulting from entering the 200’ straight at 27 mph rather than
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Time vs. entrance speed for 200 and 500 feet
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Exit speed vs. entrance speed for 200 and 500 feet
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Table 1: Exit speeds and times for several entrance speeds

200 ft 500 ft
straight straight

Entrance || Exit Exit

speed speed | Time || speed | Time
(mph) (mph) | (sec) || (mph) | (sec)
25 61.51 | 2.972 || 81.12 | 5.811
27 61.77 | 2.916 || 81.51 | 5.748
29 62.15 | 2.845 || 82.02 | 5.676
31 62.34 | 2.793 || 82.19 | 5.599
35 63.18 | 2.691 || 82.78 | 5.472
40 64.65 | 2.548 || 83.49 | 5.282
45 66.85 | 2.392 || 84.68 | 5.065
50 69.27 | 2.261 || 85.83 | 4.875

25 mph is about 6 hundredths. Frankly, not as much as I expected. The
time difference between entering at 31 mph over 25 mph is about 2 tenths,
again less than I would have guessed. The speed difference at the end of the
straight between entering at 25 mph and 50 mph is only 8 mph, a result of the
fact that the car labors against friction and higher gear ratios at high speeds.
It is also a consequence of the fact that there is so much torque available at
25 mph in low gear that the car can almost make up the difference over the
relatively short 200’ straight. In fact, on the longer 500’ straight, the exit
speed difference between entering at 25 mph and 50 mph is not even 5 mph,
though the time difference is nearly a full second.

This analysis would most likely be much more dramatic for a car with
less torque than a Corvette. In a Corvette, with 330 ft-lbs of torque on tap,
the penalty for entering a straight slower than necessary is not so great as it
would be in a more typical car, where recovering speed lost through timidity
or bad cornering is much more difficult.

Again, the analysis can be improved by using a real torque curve and by
checking whether the wheels are spinning in lower gears.



